Vibration and System Identification
(adapted from 2013 and 2014 lectures)

Prof. Angie Lee
Folsom Dam: vibration testing

Shaker: sinusoidal input

Cold gas thruster: impulse

http://illl.colorado.edu/test_measurement_equipment/vibration_testing/
Lecture outline

• Motivation

• Vibration testing (experiment)
 • Shaker tests, impact hammer tests
 • Lab test --> field test --> flight test

• Vibration analysis (modeling)
 • Spring-mass-damper model (mathematical modeling)
 • Continuum model (numerical modeling)
 • Validation
Rocket vibration

- HEAT1X-Tycho Brahe inaugural flight
- Pilot's POV – 9 Hz oscillation
- http://www.youtube.com/watch?v=rASHRBo9Rg&feature=player_embedded
“Pain was directly associated with motion of the eyeballs and testicles, as well as from internal heating that resulted from sloshing of the brain and viscera. The vibration frequency was also in the range of normal brain waves, adding confusion to decision making, hand and arm movement, and even speech.”

- Jim Fenwich on Pogo oscillations
“The high-pressure pumps rotated at speeds reaching 36,000 rpm on the fuel side and 24,000 rpm on the oxidizer side. At these speeds, minor faults were exacerbated and could rapidly propagate to catastrophic engine failure.”

“…the vibration spectral data contained potential failure indicators in the form of discrete rotordynamic spectral signatures. These signatures were prime indicators of turbomachinery health…”

"Wings in Orbit" edited by Wayne Hale and Helen Lane
“While the lower stages of the North Korean rocket continued to function for several minutes, resonance at the top of the launch vehicle resulted in ‘catastrophic disassembly’ of the third stage at Max Q,’ said Charles Vick, senior technical and space policy analyst at GlobalSecurity.org. ‘The vibrations just tore it apart.”

Cantilever vibration modes

http://iitg.vlab.co.in/?sub=62&brch=175&sim=1080&cnt=1

https://www.youtube.com/watch?v=kun62B7VUg8
Vibration testing

- Lab tests
 - Shaker tests
 - https://www.youtube.com/watch?v=o8H_NT7Ziao
 - https://www.youtube.com/watch?v=pCXTZDfTdG0
 - https://www.youtube.com/watch?v=XkmgMkDKAyU
 - Impact hammer tests
 - https://www.youtube.com/watch?v=tBRjPN8m6zE
Vibration analysis

- Need to determine loading (what is causing the vibration?)
- Modeling
 - Mathematical model
 - Lumped element model (spring-mass-damper)
 - Continuum model
 - Numerical/computational model
 - SolidWorks simulation
- Verify model with experimental data
Spring-mass-damper model

- Around a resonance frequency, you can model as

\[m_e \ddot{y} = f - ky - cy \]
\[m \ddot{y} + c \dot{y} + ky = f \]
\[\ddot{y} + \frac{c}{m_e} \dot{y} + \frac{k}{m_e} y = \frac{f}{m_e} \]
\[\ddot{y} + 2\zeta \omega_n \dot{y} + \omega_n^2 y = f / m_e \]

\[\omega_n = \sqrt{\frac{k}{m_e}} \quad \zeta = \frac{c}{2\sqrt{m_e k}} \]
Frequency response function (FRF)

- **Position**

\[
\frac{Y}{F} = \frac{1}{m_e \left(\frac{1}{\omega_n} \right)^2} \left(1 - \left(\frac{\omega}{\omega_n} \right)^2 + 2\zeta \frac{\omega}{\omega_n} j \right)
\]

- **Velocity**

\[
\frac{V}{F} = \frac{j\omega}{m_e \left(\frac{1}{\omega_n} \right)^2} \left(1 - \left(\frac{\omega}{\omega_n} \right)^2 + 2\zeta \frac{\omega}{\omega_n} j \right)
\]
Frequency response function (FRF)

- Acceleration

\[
\frac{A}{F} = \frac{-\frac{1}{m_e} \left(\frac{\omega}{\omega_n} \right)^2}{1 - \left(\frac{\omega}{\omega_n} \right)^2 + 2\zeta \frac{\omega}{\omega_n} j}
\]
Damping coefficient

- From the peak: \[\omega_r = \omega_n \sqrt{1 - \zeta^2} \]
- From the half-power bandwidth: \[\Delta \omega = \omega_{+hp} - \omega_{-hp} \]

\[
Q = \frac{\omega_r}{\Delta \omega}
\]

\[
\zeta = \frac{1}{2Q}
\]

http://www.sengpielaudio.com/calculator-cutoffFrequencies.htm
SolidWorks simulations

- Cantilever beam
- Rocket
Mode 1: 299.09 Hz
Mode 2: 1297.9 Hz
Mode 3: 1417.6 Hz
Mode 4: 1679.3 Hz
Mode 5: 3917.6 Hz
Mode 6: 5149.6 Hz
Mode 7: 6538.1 Hz
Mode 8: 7545.1 Hz
Mode 10: 8933.4 Hz
Mode 11: 12199 Hz
Mode 12: 13198 Hz
Mode 13: 14941 Hz
Mode 14: 17714 Hz
Mode 15: 18072 Hz
Mode 1: 0 Hz
Mode 2: 7.0439E-4 Hz
Mode 3: 1.7816E-3 Hz
Mode 4: 11.752 Hz
Mode 5: 11.802 Hz
Mode 6: 62.133 Hz
Mode 7: 62.287 Hz
Mode 9: 111.06 Hz
Mode 10: 114.37 Hz
Mode 11: 154.73 Hz
Mode 12: 155.32 Hz
Mode 13: 257.09 Hz
Mode 14: 266.75 Hz
Mode 15: 273.79 Hz
Causes of rocket vibration

- Thrust oscillations
- Noise (pressure waves) due to motor or engine
- Fluid flow phenomena (aerodynamic stress)
 - Wind
 - Turbulence
 - Vortex shedding
Video of flutter

- https://www.youtube.com/watch?v=OhwLojNerMU